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In flow of an lnvlscld hypersonic stream past slender airfoils of not too 
small-aspect ratio with sharp leading edges, the so-called "theory of slices" 
[l] Is applicable, according to which the flow In each plane In the direction 
of the stream can be considered Independently, as In flow past a two-dlmen- 
sional profile. 

In this paper we give a formulation of the problem of nonviscous flow 
past a slender airfoil with blunt leading edges and of the flow of viscous 
gas past an airfoil with sharp leading edges. 

It Is shown that ln the case when the thickness of the entropic or the 
boundary layer Is comparable with or exceeds the thickness of the airfoil, 
the slice theory In Its usual form Is inapplicable. This theory can be used 
to calculate the flow outside the entropic or the boundary layer. For the 
case of flow of a viscous gas the slice theory c?n be applied to the whole 
flow for small values of the parameter s = (x - I)/(% + I), where K Is 
the adiabatic exponent. 

An example Is presented of a solution for the case of nonviscous flow past 
a delta airfoil with blunt leading edges under the assumption of Isentropic 
flow lnslde the entropic layer. The self-similar solution Is considered for 
the problem of flow of a vlscouS gas past a triangular plate with sharp lead- 
lng edges under the strong Interaction conditions between the lnvlscld stream 
and the boundary layer. 

At the present time there exist studies of the Influence of viscosity [l] 
and slight bluntness of the leading edges of bodies [2 for the cases of two- 
dimensional and axlsymmetrlc flows. In papers [3 and i ] there 1s p?esented a 
study of the influence of bluntness, and In [5] a study of the Influence of 
viscosity on three-dimensional hypersonic flow past slender prolate bodies 
under the condition that the thickness of the entropic C63 or of the boundary 
layer be bornparable with or exceed the thickness of the body. In the present 
paper we consider under the same condition the influence of bluntness of the 
leading edges and the Influence of viscosity on three-dimensional hypersonic 
flow past slender airfoils. 

1. We make use of a Cartesian system of coordinates (Flg.1) LX, Ly, Lz, 

where L Is a characteristic length, the x-axis Is directed along the velocity 

l ) The contents of a lecture at the Second All-Union Congress on Theoretl- 
cal and Applied Mechanics, 30th January, 1964. 
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vector U, of 

UU,, vu,, WLL 

respectively, 
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the undisturbed stream. We define the following notation: 

are the components of velocity along the X, y and z axes, 

PPJJ2 ia the pressure, ppm Is the density ( 0, Is the den- 

sity of the undisturbed stream), Ld, ~7, ~6 are quantities characterizing 

the respective dimensions of bluntness, thickness of the airfoil, and thlck- 

ness of the entropic or the boundary layer (It Is assumed that 

d.cig, t((l, S-=gl, 62.7 j%xi+l, 

where M, Is the Mach number of the undisturbed stream). 

Let the equation of the surface of the airfoil have the form y =7/(x,=), 

whilst the equation of the outer boundary of the entropic or the boundary 

layer Is y = Tcg(w,a); we shall assume here that f - 0 _ 1 . 

Outside the entropic or the boundary layer from the estimates [l] 

U = 1 + 0 (9), u - z, w - 9, p - 22, p - 1 

It follows that In each plane 2 = zO = const the equations of motion with 

relative error of order T’ reduce to the equations of one-dimensional 

unsteady flow of gas displaced by a piston 

The boundary conditions on the boundary of the entropic or the boundary 

layer and on the surface of the shock wave 1/ = T$(x,z) may be written down 

(the subscript x denotes partial differentiation with respect to x ) 

x;-- 1 
P= 2~M,*t~$~= (1.2) 

for y = rip (2, 30) 

Fig. 1 u = rep, for y = T(p(2, 20) 

The mutual Interaction of the cross-sections p = const Is accomplished 

via the entropic or the boundary layer, the flow In which Is three-dimensional. 

For the entropic layer, by analogy with the cases of two-dimensional or axl- 

symmetric flow [61, we have 

p - t*, p - zWK, e -1 , u-l, u-t, lJ - +z/* 

The estimate for w Is obtained from consideration of the flow close to 

the leading edge of the airfoil, making use of the principle of local sweep. 

SImIlar estimates hold for the doundary layer (It Is assumed that the tem- 

perature In the boundary layer has the order of the stagnation temperature 
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of the undisturbed stream [l]) 

P -r2, p, - z Ye, u-l, v - z, w-e 

The estimate for w Is obtained from the projection of the momentum equa- 

tion on the z-axis. There Is an essential difference In the behavior of w 

as F tends to zero (n -. 1) In the case of the entropic layer (W incrrsses) 

and In the case of the boundary layer (~0 _ 0) . From the projection of the 

momentum equation on the y-axis, we have, for the differential pressure Ap 

across the entropic or the boundary layer, respectively, 

P-' AP - r2/K&-1 7 P-' AP - $33-1 

To this order of error the pressure Inside these layers can be assumed to 

depend only on x and z . 

2. Let us consider the nonviscous flow In the three-dimensional entropic 

layer. The equations of motion are written down In the form 

,(ug+vg+w~ +g=o ) 
p(u~+v~+wag)+&o (2.1) 

p = p (5, z), g + ?$f $-g = 0 

The boundary conditions, according to which the surface of the body and 

the outer surface of the entropic layer are stream surfaces, have the form 

v = r tufx + wfz) for Y = ?f @* Y) (2.2) 

v = r (qx + fi%) for Y = TcF t2* z, 

From the requirement for the thickness 6 of the entropic layer (6 2 x) 

we find, using the equations of contlnulty and of lsentroplc condition, a 

relation between 7 and the characteristic hluntness dimension 3 

z < (&d)x'(2+X) (2.3) 

Equations (2.1) and (2.2) are solved together with equations (1.1) and 

(1.2), taking account of the continuity of pressure on the surface 

y = 7G:(X,‘?), which Is determined from the solution. 

The computation starts from a certain surface 

5 = WY rf(W, 4 <Y < rg (T(z), 2) 

The curve x = T(z) , by assumption, Is separated from the leading edge 
by a distance of the order of the characteristic dimension of bluntness 3. 

It is assumed that the flow parameters are calculated on this surface. The 

calculation can be achieved, foe example, by making use of the principle of 

local sweep, as for the leading portion of a two-dimensional blunted profile. 
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Let us consider further the streamline flow past a delta airfoil, assuming 
the flow in the three-dimensional entropic layer is isentropic, which is 
valid if all the gas in the entropic layer passed through a shock wave of 
uniform intensity. This is approximately fulfilled if the bluntness occurs 
in the. form of a wedge with a large included angle or a plane face. 

For the stipulated type of bluntness the assumption of the flow being 
$entroplc intheentropic layer Is equivalent to the hypothesis that the outer 

transitional” part of the region of the entropic layer, In which the vortl- 
city Is essential and the flow in which cannot be taken to be isentropkc, Lts 
far thinner than the whole entropic layer and therefore can be approximately 
taken as a surface of tangential discontinuity, coinciding with the outer 
boundary of the entropic layer Y = T(P(X,Z) . The position and intensity of 
the tangential discontinuity, which separates the entropic layer from the 
rest of the flow, are determined from the solution. 

It’should be noted that the specified hypothesis becomes more exact as 
1 when the shock wave comes closer to the body. 

ze?at& 
Then it is clear that 

(2.3) must remain valid. 

To the specified accuracy the system of equations (2.1) can be isritten as 

Here the first three equations express the absence of vorticity, which 

follows from the assumption of the flow being isentropic. From (2.4) it 

follows that 

u. = tL (s, z), w =20(x, .z>, P = P +, 4, P = P (% 4 (2.5) 

In the equation of continuity the first and third terms depend on x and 

,s ; hence the second term is a function of those same varlables; whence it 

follows that the dependence of u on Y is linear. From Equation (2.2) we 

have 
9V u e& - f,) -i- 2s (cp, - f,) 

a?,= 9-f 
Gw 

Substituting (2.6) in the equation of continuity and making use of the 

equation of isentropic condition and Bernoulli’s integral, we reduce system 

(2.4) to the form 

Here Pa Is the stagnation density in the entropic la$?r; it is constant 

by assumption. In order to complete system (2.7), it Is necessary to specify 

the functional dependence between the pressure p (and also between the 

density, since p / g” = canst) and the equation of the outer boundary of 

the entropic layer 2, = cp(x,r) . ThLs dependen%e is determined from the 

solution of the system (1.1) with the boundary conditions (1.2) . 

Equations (2.7) satisfy the boundary conditions on the curve x = T(a), 

where all the parameters of the flow are specified. 



On three-dimensional hypersonic flow past slender airfoils 1021 

We notice that the assumption of the flow being Isentropic offeres the 
posslbllity of “averaging’ of Equations (2.1) with respect to the Y coor- 
dinate in the simplest way. Other variants of averaging are also possible 
with allowance for varlablllty of entropy, which would lead to more compll- 
cated equations than (2.7). 

The system (2.7) calls to mind the syetem of equations of plane flow of 
Tw;;;presslble gas, which facllltates analysis. The solution of this system 

a known functional relationship betweer. p and cp ) can be accompll&ed 
by the method of characteristics. 

Let us construct a partlzularly simple example of the solution, assuming 

the thickness of the entropic layer to be everywhere a constant quantity 

m - y = C , rlhere C is a constant, determined from computation of the flow 

close to the leading edges. In this case the system (2.7) with the boundary 

conditions which, making use of the symmetry of the flow, are set on the 

curve x=T(z)for t>O and on the line 2 = 0 , takes the form 

aPU ____~~=O, ~_$+o, p=p,(i-~)l’(X-l) (2.8) 

u = uo (4, w = w, (2) for Z =Z tg XAv w=o for z=o 

In the equation of the curve x - T(t) with accuracy of order d it 1s 

assumed that this curve coincides with the leading edge, the angle of sweep 

of which is denoted by IA* F rom the solution of the system (2.8) we deter- 

mine P(X,Z) and P(x,z) i and from the pressure so calculated, by using 

the functional relationship between p and cp we construct the outer bound- 

ary of the entropic layer u = (~(%,a) , whilst from the equatlon f = cp - C 

we determine the surface of the body. E3y this method, then, the lnverse 

problem is solved. 

For flow past a delta airfoil bluntness of 
shape of which is constant along the span, 
the- flow parameters on the curve x - T(t) 
calculated by using the principle of swept 
wings, are constant (with the exception of 
a small region in the nelghhorhood of the 
vertex of the airfoil). In (2.8) we can set 
uo = const and 

“R 
- c&at .As is shown by 

calculations on t e curve ‘X = T(Z) the 
velocity component perpendicular to this 
curve exceeds the velocity of sound. Resides 
this, it 1s not difficult to show that the 
velocity vector on this curve makes a posl- 
tlve annle with the x-axis when t > 0 , 

Fig. 2 i.e. w 2 0 . Bearing ln mind these cl&m- 
stances, it 1s not difficult to construct 
the flow attern on the basis of the solu- 

tion of Cauchy’a problem for Equation (2. 87. The flow pattern (for half of 
the airfoil) 1s as shown in Plg.2. A region (1 of uniform flow adjoining 
the leading edge corresponds to the case of flow past a ewept leading edge 
plate of infinite span. Next there follows a region b of Prandtl-Meyer 
flow and then again comes a region c of uniform flow. As follows from 
construction of the solution, the angle between the velocity vector V, in 
the region u and the ray OR is equal to the Mach angle In region 0, and 
slmllarly the angle between V, and the ray f.7~ Is equal to the Mach angle 
in region c . This simple example illustrates the appearance on the delta 
airfoil of regions of rarefactlon with pressure less than the pressure which 
la given by calculation according to the theory of swept leading edge plate 
of infinite span. The results obtained, as may be expected, do not depend 
upon the elmpllfyl.~ assumptions made. 
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The appearance of regions\of rarefaction follows from the fact that close 
to the leading edges the velocity component m Is directed from the middle 
towards the edges of the airfoil, In accordance with which the streamlines 
(broken line in Fig.2) are concave towards the x-axis. 

Let us present values of the flow parameters, 
calculated according to the solution described 
for n = 1.4, Mm = m and three values of the 
angle of sweep XA 

XA M, Al, a P Y 

30? 3.45 4.0 6"40' 24"51' 14"29' 
45" 4.57 5.31 7"05' 19"43' lO"57' 
60" 7.24 8.7 6"20' 13"41' 6"33' * * / _kL The leading edge, by assumption, is a wedge 

(Flg.3) such that, in the flow past it, perpendi- 
cular to the leading edge, the Mach number behind 

M,COSX the shook = 1 (the semi-angle of the edge is equal 
to 45.5"). It is assumed that the curve x=IT(;!) 

Fig. 3 
passes close to the shoulder C of the wedge 
(Fig.3) and therefore the velocity component nor- 
mal to the leading edge on the curve n = T(Z) is 

taken from the Prandtl-Meyer solution Immediately next to the point C after 
the expansion. The velocity component along the tangent to the curve x=2'(z) 
Is equal to its value In the undisturbed flow. The values given above for 
M. and X; are the Mach numbers in the corresponding regions, whilst the 
remaining parameters are defined in Fig.2. 

From the given data it follows that the deviations of the streamlines from 
the straight-lines a = const are not large. These same data enable us also 
to estimate the relative dimensions of the regions c, b and c for differ- 
ent Values Of xA* 

We notice moreover a simple solution of Equations (2.7) for the case of 
flow past a plane triangular plate at an angle of attack, when y = x and 
the pressure Is calculated according to Newton's formula p = rpz .Moreover, 
if we neglect the thickness of the entroolc layer near the leading edge in 
comparison with Its thickness at the middle par 
ytipns (2.7) we can take cp = & (c), u = 

Ion of the airfoii, then in 
,w = =(c),p = p (t), where 

. Then Equations (2.71 reduce to a system of ordinary differential 
equations with respect to C . 

3. It Is essential to note that in the case when the thickness of the 
entropic layer Is comparable with or exceeds the thickness of the body, the 
lift Y for slender elongated bodies Is diminished in comparison with its 
value Y, for pointed bodies. 

From [3], where streamline flow past slender blunt elongated bodies is 
considered under the assumption [2] concerning the stro compression of the 
gas behind the shock wave, It follows generally that Y Y0 = 0 i" From 141, 
where a refinement of the results of [3] Is given with the help of introduc- 
tion of the entropic layer C6], It. follows that y/ y0 ~~~'X~s. For the 
case under consideration of flow east ulanar bodies of airfoil type the 
bluntness Increases the lift. Papers [i and 81, where flow past a-plane blunt 
plate at a small angle of attack is worked out by the method of perturbations, 
confirm the stated conclusion. 

This difference arises from the fact that for deflection at a small angle 
In the case of an airfoil the entropic layer Is displaced by the body, whilst 
In the case of a slender elongated body the boundary of the enroplc layer is 
scarcely altered. 

4. Let us consider the flow of a viscous hypersonic stream past slender 

airfoils with sharp leading edges. We introduce the following supplementary 

notation: up0 Is the coefficient of viscosity (uc is the coefficient of vis- 

cosity corresponding to the stagnation temperature of the unperturbed stream), 

o is the Prandtl number, hU2 Is the enthalpy. 
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The equations of the three-dimensional boundary layer have the form 

1 a P ah ( ) -- 
=R,ay oay + 

~&(p~~) 

The flow outside the boundary layer satisfies the system of equations 

(1.1) and the boundary conditions (1.2). It Is assumed that the thickness 

of the body does not exceed the thickness of the boundary layer 6-(e/R,)‘ld. 
On the surface separatlr& the boundary layer from the lnvlscld stream 

y = VJI(X,Z) we have to satisfy the conditions of continuity of pressure and 

of the vertical component of velocity. The temperature on the outer surface 

of the boundary layer Is assumed to be equal to zero. On the body, the equa- 

tlonsof the surface of which Is y = T/(.X z), we have to satisfy the usual 

conditions of adhesion and the equality of temperature of the gas and the 

wall (or the condition for the heat flow Into the wall). 

As an example of three-dimensional viscous hypersonic flow let us consider 

the flow past of plane triangular plate with sharp leading edges, with a 

given surface temperature or heat Insulation, at M, = m . We shall seek 

the equations of the outer surface of the boundary layer, the surface of the 

shock wave and the remaining parameters 

the form 

p = 62po (Es ‘I) , 
v/3: 

p = R, (5 9) 7 9 

Equations (4.1) of Invlscid flow and the boundary conditions at the shock 

in the region of inviscid flow In 

y = sg (x, z) = 6x’jaY (5) (4.2) 

v = 6Vo (5* rl) 
z’l4 ’ 

b-1, 
R, ” 

wave (1.2) and on the surface of the boundary layer take the form 

Ro(V"-~)~-R,5~~_~~+~~=0 

(4.3) 
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R Xt-i -- for q = Y (5) 3 . 
o-SC---l 

V -i+r;$ 0- for ‘I = (D(6) 

For the boundary layer we seek the Bolutlon %n the form 
f4.4) 

u = u (rl, E), * = JQll 51, v= 2-"hW(?J, 5), h = h(q, 6) 

Q = x-'MSR (Q C), p = x-"r 8% P (0, P (t;) = P, (z;, dD (g)), 6 = R,-*/* 

'l'he boundary condltlons i-or the system of equations of the boundary layer 

take the form 

v=o, u=o, w=o, h=hr)=comt (@r ah/aq=o) for rl=o 

u--i, w= 0, h=O for 9 = Q, (51, -tfo<<db= cat%,, 

Here%& ---is, as before, the angle of sweep of the leading edges, 

substitute Expressions (4.4) in Equations (4-l), we obtain a system of 

equations in two independent variables n and C , which have to be solved 

together with Equations (4.3) whlle~fulfllllng the boundary conditions (4.5). 

For the sake of simplicity we use for the pressure the formula of the tan- 

gent wedges, which introduces in the plane case an insignificant error of 

the order of a few per cent [l] 

P= (4.6) 

Use of ('4.6) makes It possible to avoid solving the system (4.3). We 

shall assume that the Prandtl number u = 1 and the wall is thermally insu- 

lated ( W&37) = 0 when TJ = 0) . Then there exists an integral 

h + 11, (u" + w2) = l/a (4.7) 

Finally, we shall assume that the dependence of the coefficient or visco- 

sity on the enthalpy Is linear (p = a) . Let us make a substitution of 

the variables In Equations (4.1); 3.n place of the independent variables q 

and C introducing the variables s and C , where the A.A. Eorodnitsyn 

variable e is given by Equation 

n 

ds=Rdq, s= Rdq, 
s 

a, (5) =rdsiR (4.8) 
0 0 

It is essential that as we approach the outer surface of the boundary 

layer, i.e. when n _ a({), the quantity s -, m , whence follows the last 

equation of (4.8). 

For dependent variables let us Introduce two stream functions $ and x 

according to Equations 

u = &Ids, w--@7=a~fl3s (4.9) 
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The equation of continuity can be written as 

R (V - v4 qU) + (W - giq (as / aI& = - v4 x - ag / 8.7 (4.10) 
Taking Into account Equations (4.6) to (4.10) the system of equations of 

the boundary layer (4.1) can be written in the form 

- ($r. + 5/4x) %S + W%S + WI + El 11 - x,2 (1 + 5”) -$*2 - 254,x,] x 

x w, 5 + (1 + 5”) P’ / PI = Pe,%m 
x-l 

El = 7 

- (& + v4 x) xc? + g&9 - 81 [I - xs2 (1 + 5”) - $2 - 2W*xsl x 

x [l/z + GP’ / PI = P&l-lxsss (4.11) 

q+D - rq2=*y [l - x12 (1 + 6”) - $8” - 2%xd ds 

P = 1,; (x + 1) (V4 0 - wq” 

(where Yne subscripts s and 6 denote partial derivatives with respect to 

the corresponding quantities, whilst primes denote differentiation with res- 

pect to 6 ). 

The boundary conditions (4.5), after taking account of (4.9), assume the 

form ‘II, (0, 5) = x (0, 5) = $8 (0, 5) = xs (0, 5) = 0, Xe(oo,C) = 1 

1))8(oo, 5) = -5 (-- 5< C< 50) (4.12) 

As a result of solution of the system of equations (4.11), with the bound- 

ary conditions (4.12), we determine the functions $ (s, 07 x (% 07 
P (0, Q, (0. 

Let, us seek the solution of Equations (4.11) in the form of the series 

9 = nl(c#o - 5)“% (A) + (5, - 5)” 92 (h) + . . . ) ?b = sLp (5, - 5)-l” 

x = vmo - 5)“Xl (A) + (5, - CP x2 (A) + (50 - 5)” x3 (A) + . . . 

JJ = A, Gl - 5)“’ + A, (50 - cp + A, (5, - 5)” + . . . (4.13) 

@ = + (L - 5)” + B;(&, - 5)” + B+, - 5)“” + . . . 

Substituting these series In Equations (4.11) and (4.12), we obtain recur- 

rent systems of ordinary differential equations with boundary conditions spe- 

cified for A =‘O and X =.m . The first system has the form 

$‘1$1” + 28, (1 + Cc”) L, = 4h-1$l”‘7 &x1” - 2&,5&, = 4&1--1X;” 

L,=l- (x 1’ )” (1 + 5,“) - NJ1')2 - 25O~l’Xl’ (4.14) 

& (0) = 9; (0) = Xl (0) = Xl’ (0) = 0, $1’ (a) = - cm Xl’ (00) = 1 

After solution of this system we determine the quantities 

(4.15) 
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The subsequent systems.will not be reproduced here; it is not difficult 

to see by substitution that if In Equations (4.13) we set 

$2 = VGh q?i = 0 (i>3), xi = Ai = Bi z 0 (i),2) (4.16) 
then Expressions (4.13) satisfy Equation (4.11) and the boundary conditions 

(4.12). 

Analysis of the expression for the pressure, taking account of (4.13) and 

(4.16), gives 

where 5 is the coordinate measured along the normal to the leading edge of 

the airfoil. Accordingly, the pressure (and hence also the other flow para- 

meters) are just the same as if the flow was past a swept plate, the solution 

for the strong Interaction on which is well known [9 and lo]. 

In view of the fact that Equations (4.11) are parabolic, having 6 as a 
characteristic, the solution, which Is constructed from the leading edge, 
'does not know ofW the presence'of the other leading edge and does not satis- 
fy the condition W = 0 in the plane of symmetry of the airfoil. 
entropic layer (Section 2), on the contrary, 

(In the 
by virtue of the equations being 

hyperbolic, the solution is constructed starting out from the condition W=O 
in the plane of symmetry). It can be shown that, for certain 6 = 6+ is non- 
viscous flow there arises a shock wave, hehind which the solution so construc- 
ted Is not valid. The solution in the region 161 < 16+1 will not be con- 
sidered in the present paper. 

In FJg.4 and 5 are show _&he results of a calculation of the functions 
u (l/z h E1) and IV (l/zL J?al) obtained by A.A. Eogacheva by means of the 
numtl,lca Hunge-Kutta solution of Equations (4.14) on an electronic computer. 
The values of Xa .and x taken In the calculations are shown in the graphs. 

Fig. 4 Fig. 5 

From the calculations carried out it follows that the maxlmal value of 
IWI when H = 1.4 and with X.5? varying from 30" to 75", lies in the range 
from 0.08 to 0.216, whilst if H = 1.667 It lies in the range 0.077 to 0.258. 
This confirms the estimates of Section 1 according to which W - g . 
be rigorously proved that when e + 0 the quantity W + 0). 

(It can 
As %A inCrea- 

ses the quantity W Increases, so thnt for highly swept airfoils the lnflu- 
ence of the secondary flow can be Important. It Is vital to notice that In 
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contradistinction to the case of the nonviscous entropy layer, in which the 
secondary flow is directed away from the plane of symmetry ( w 1 0 when 
z>C), in the case of viscous flow past airfoils the secondary flow is 
directed towards the plane of symmetry ( w < 0 when z > 0 ). From the 
projection of the momentum equation on the z-axis (the third equation of 
(4.1)) we find that, close to the plane of symmetry of the airfoil (when 
2 > O), the pressure must increase with decreasing z , in order to slow 
down the secondary flow and ensure fulfilment' of the condition m = 0 when 
z=C* Hence it can be concluded that the region /cl < /cl(l close to the 
plane of symmetry of the airfoil, the solution for which is not considered, 
is a region of increased pressure, and not reduced pressure as in the case 
of the entropic layer. 

The author thanks V.V. Lunev and V.V. Sychev for very helpful discussions. 
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