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In flow of an inviscid hypersonic stream past slender airfoils of not too
small-aspect ratio with sharp leading edges, the so-called "theory of slices"
(1] is applicable, according to which the flow 1in each plane 1n the direction
of the stream can be considered independently, as in flow past a two-dimen-
sional profile.

In this paper we give a formulation of the problems of nonviscous flow
past a slender airfoil with blunt leading edges and of the flow of viscous
gas past an airfoil with sharp leading edges.

It 1s shown that in the case when the thickness of the entropic or the
boundary layer 1s comparable with or exceeds the thickness of the airfoil,
the slice theory in its usual form is inapplicable. This theory can be used
to calculate the flow outside the entropic or the boundary layer. For the
case of flow of & viscous gas the slice theory can be applied to the whole
flow for small values of the parameter g — (x ——1)/(x-+ 1), where «x 1s
the adiabatic exponent.

An example 1s presented of a solution for the case of nonviscous flow past
a delta airfoil with blunt leading edges under the assumption of isentropic
flow inside the entropic layer. The self-similar solution 1s considered for
the problem of flow of a viscous gas past a trilangular plate with sharp lead-
ing edges under the strong interaction conditions between the inviscid stream
and the boundary layer,

At the present time there exist studies of the influence of viscosity [1]
and slight bluntness of the leading edges of bodles [2] for the cases of two-
dimensional and axisymmetric flows. In papers {3 and 4] there is presented a
study of the influence of bluntness, and in [5] a study of the influence of
viscosity on three~dimensional hypersonic flow past slender prolate bodiles
under the condition that the thickness of the entropic [6] or of the boundary
layer be comparable with or exceed the thickness of the body. In the present
paper we consider under the same condition the influence of bluntness of the
leading edges and the influence of viscosity on three-dimensional hypersonic
flow past slender airfolls,

1, We make use of a Cartesian system of coordinates (Pig.l) Lx, Ly, Lz,
where I 1is a characteristic length, the x-axis 1s directed along the velocity

*) The contents of a lecture at the Second All-Union Congress on Theoreti-
cal and Applied Mecnhanics, 30th January, 1964,
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vector U, of the undisturbed stream, We deflne the following notation:
Uls, VUw, wle are the components of velocity along the x, y and z axes,
respectively, Pp,lUs 1is the pressure, pp, 15 the density ( 0 1s the den-
sity of the undisturbed stream), L4, LT, L& are quantities characterizing
the respectlive dimensions of bluntness, thickness of the airfoil, and thick-
ness of the entropic or the boundary layer (it is assumed that

d<1,r<1, 6<1v 6?1’: MOOT?11
where ¥, 1is the Mach number of the undisturbed stream).

Let the equation of the surface of the airfoll have the form y = 7r{(x,z),
whilst the equation of the outer boundary of the entropic or the boundary
layer 1s y = t9(x,2z); we shall assume here that f ~ ¢ ~ 1 .

Outside the entropic or the boundary layer from the estimates [1]

u=14o0(®, v~1 w~71, p~1 p~1
it follows that in each plane 2z = 2, = const the equations of motion with

relative error of order 1% reduce to the equations of one-dimensional
unsteady flow of gas displaced by a piston
ov ov 1 9p dp dp v 2 2
w P tey =0 Gt m0 ety =0 ()
The boundary conditions on the boundary of the entroplc or the boundary
layer and on the surface of the shock wave y = ty(x,z) may be written down
(the subscript x denotes partial differentiation with respect to x )

Uy 2, 1
U::x+1(1—'Mw%%f)
2‘(2\[)_‘2 ®—1
p= ®+1 ( _ ZxMooztz\pxz) (1.2)
_o%x41 2 -1
p—n_i (1+ (x'—'i)MooztzlpJg)
I for ¥y =1¢ (z, 20)
Fig. 1 V= Ty for ¥ = 1@ (x, 20)

The mutual interaction of the cross-sections 2 = const 1s accomplished
via the entropic or the boundary layer, the flow in which is three-dimensional
For the entropic layer, by analogy with the cases of two-dimensional or axi-
symmetric flow (6], we have

p~71, p~1t¥,8et u~1, v~r, W ~ T

The estimate for p 1s obtained from consideration of the flow close to
the leading edge of the airfoll, making use of the princlple of local sweep.
Similar estimates hold for the Soundary layer (it 1s assumed that the tem-
perature in the boundary layer has the order of the stagnation temperature
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of the undisturbed stream [1])
p~1v, p~tie, u~1, v~7T, W~E

The estimate for w 1s obtained from the proJjection of the momentum equa-
tion on the z-axls, There is an essential difference in the behavior of
as ¢ tends to zero (nx - 1) in the case of the entroplc layer (p increases)
and in the case of the boundary layer (y - O) . From the proJection of the
momentum equatlon on the y-axls, we have, for the differential pressure Ap
across the entropic or the boundary layer, respectively,

PlAp ~ Toxed, prAp ~ 1%

To this order of error the pressure inside these layers can be assumed to
depend only on x and 2z ,

2. Let us conslder the nonviscous flow in the three-dimensional entropic
layer. The equations of motion are written down in the form

ou ou ou op __
P("—a—z-i-va—y +w—a;)+g—0

ow ow ow op __
pluge Ty +o )+ 55 =0 @D
e 0 d
p=p(2), G+ 5+ =0

0

The boundary conditions, according to which the surface of the body and
the outer surface of the entropic layer are stream surfaces, have the form

v = 1 (ufx +wf) for ¥ =1f(z,¥) 2.2)

= z, Z
p = T (ugs +wey) for y=TE(E )
From the requirement for the thickness & of the entropic layer(é EZ T)

we find, using the equations of continuity and of isentropic condition, a
relation between 1 and the characteristic bluntness dimension 4

T (ed)/* (2.3)
Equations (2.1) and (2.2) are solved together with equations (1.1) and
(1.2), taking account of the continuity of pressure on the surface
¥ = 1¢(x,2z), which 1s determined from the solution,

The computation starts from a certain surface
z = T(2), t/(T(2), 2) <y < (T(2), 2)
The curve x = T'(z) , by assumption, is separated from the leading edge
by a dlstance of the order of the characteristic dimension of bluntness 4.
It is assumed that the flow parameters are calculated on this surface. The

calculation can be achieved, foe example, by making use of the principle of
local sweep, as for the leading portion of a two-dimensional blunted profile,
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Let us consider further the streamline flow past a delta airfoll, assuming
the {low in the three~dimensional entropic layer is isentropic, which is
valid if all the gas in the entrople layer passed through a shock wave of
uniform intensity. This is approximately fulfilled if the bluntness occurs
in the form of a wedge wlth a large included angle or a plane face,

For the stipulated type of bluntness the assumptlon of the flow belng
isentropic in ﬂreentragic layer 1s equivalent to the hypothesis that the outer
"transitional® part of the reglon of the entroplc layer, in which the vorti-
clty 1s essential and the flow in which cannot be taken to be isentropic, is
far thinner than the whole entropic layer and therefore can be approximately

taken as a surface of tangential discontinuity, coinciding with the outer
boundary of the entroplc layer y = Tm(x,z} . The position and intensity of
the tangentla’ discontinulty, which separates the entropic layer from the
rest of the fiow, are determined from the solution,

It should be noted that the specifled hypothesis becomes more exact as
®x -~ 1 , when the shock wave comes closer to the body. Then 1t is clear that
relation (2.3) must remain valid.

To the specified accuracy the system of equations (2.1) can be written as

du dw du ?_w___ — 2.4

L% =0, =0, ay~0, p=p2 2.4

apu 39?’ dpw wAw % - £ = const
Tt tea =0 o ti3+ p 2 +(u—~1)M S

Here the first three equatlons express the absence of vortlecity, which
follows from the assumption of the {low being isentropic. From {2.4) 1t
follows that

=u(z, 2, WwW=w (z,2), p=pla, 2, p=p(z, 2 (2‘5)

In the equation of continuity the first and third terms depend on x and
z 3 hence the second term is a function of those same varlables; whence it
follows that the dependence of v on y 1is linear, From Equation (2.2) we

have v u(g,—f)+wle,—1)
By o—71
Substituting (2.6) in the equation of continuity and making use of the
equation of isentropic condition and Bernoulli's integrai, we reduce system
{2.4) to the form

(2.6)

M{pu(tpwf)1+aiz{9w(cp~f)1:0, %w%‘—gzo 2.7)

u? 4 w? Y (x-1) e 2
I Un® =Us® (14 5373

9‘*‘90(1 U,z
Here p, 1s the stagnation density in the entropic layer; it is constant
by assumption. In order to complete system {2.7), it is necessary to specify
the functional dependence between the pressure P (and zlso between the
density, since P [p* = const) and the equation of the outer boundary of
the entropic layer y = w{x,z) . This dependence is determined from the
solution of the system (1.1} with the boundary conditions (1.2)

Equations (2.7) satisfy the boundary conditions on the curve x = I(z),
where all the parameters of the flow are specified.
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We notice th%t the assumption of the flow being isentropic offeres the
possibility of "averaging” of Equatlons (2,1) with respect to the y coor-
dinate in the simplest way. Other variants of averaging are also possible
with allowance for variability of entropy, which would lead to more compli-
cated equations than (2.7).

The system (2.7) calls to mind the system of equations of plane flow of
a compressible gas, which facilitates analysis. The solution of this system
(with a known functional relationship betweer. p and ¢ ) can be accomplished
by the method of characteristics,

Let us construct a particularly simple example of the solution, assuming
the thickness of the entropic layer to be everywhere a constant quantity
o—f =C, where (¢ 18 a constant, determined from computation of the flow
close to the leading edges. In this case the system (2,7) with the boundary
conditions which, making use of the symmetry of the flow, are set on the
curve x = T(z) for 2 > O and on the line 2z = O , takes the form

dpu dpw ou Ow _ __ul w1/
e+ =0 5= =0 e=p(1—7+) (2.8)

u =uy(2), w=w(2) for x=1ztg xa w=0 forz=0

In the equation of the curve x = T{(z) with accuracy of order ¢ it 1is
assumed that this curve coincides with the leading edge, the angle of sweep
of which is denoted by XA: From the solution of the system (2.8) we deter-
mine p(x,z) and p(x,2) ; and from the pressure so calculated, by using
the functional relationship between p and ¢ we construct the outer bound-
ary of the entroplc layer y = o(x,;) , whilst from the equation f = ¢ — (¢
we determine the surface of the body. By this method, then, the inverse
problem 1s solved.

For flow past a delta airfoll bluntness of
shape of which is constant along the span
the flow parameters on the curve x = T(zj
calculated by using the principle of swept
wings, are constant (with the exception of
a small region in the neighhorhood of the
vertex of the airfoil)., In (2.8) we can set
ug* const and = const . As is shown by
calculations on the curve x = T(z) the
velocity component perpendicular to this
curve exceeds the velocity of sound, Besides
this, it is not difficult to show that the
velocity vector on this curve makes a posi-
tive angle with the x-axis when =z > O ,
l1.e. w> 0 , Bearing in mind these circum-
stances, it 18 not difficult to construct
the flow pattern on the basis of the solu-
tion of Cauchy's prodblem for Equation (2.8). The flow pattern (for half of
the airfoll) is as shown in FPig.2. A region @ of uniform flow adjoining
the leading edge corresponds to the case of flow past a swept leading edge
plate of infinite span. Next there follows a region b of Prandtl-Meyer
flow and then again comes a2 region ¢ of uniform flow, As follows from
construction of the solution, the angle between the velocity vector V, in
the region a and the ray 04 1s equal to the Mach angle in region g4, and
similarly the angle between V_ and the ray 05 1s equal to the Mach angle
in region ¢ . This simple example illustrates the appearance on the delta
airfoil of regions of rarefaction with pressure less than the pressure which
1s given by calculation according to the theory of swept leading edge plate
of infinite span, The results obtained, as may be expected, do not depend
upon the simplifying assumptions made.

Fig. 2
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The appearance of reglons.of rarefaction follows from the fact that close
to the leading edges the veloclty component p 1s directed from the middle
towards the edges of the airfoil, in accordance with which the streamlines
(broken line in Fig.2) are concave towards the x-axis.

Let us present values of the flow parameters,
calculated according to the solution described
for n = 1.%, Mo = o and three values of the
angle of sweep X,

XA My M, a B ¥
A 30° 3.45 4.0 6°40° 24°51" 14°29’
45° 4.57 5.31 7°05" 19°43" 10°57
C 60° 7.24 8.7 6°20° 13°41’ 6°33%

The leading edge, by assumption, is a wedge
(Fig.3) such that, in the flow past it, perpendi-
cular to the leading edge, the Mach number behind
M_cos X the shogk = 1 (the semi-angle of the edge 1s equal
o to ¥5,5°), It is assumed that the curve x=T(z)
passes close to the shoulder (¢ of the wedge
Fig. 3 (Fig.3) and therefore the velocity component nor-
mal to the leading edge on the curve x = T{z) 1is
taken from the Prandtl-Meyer solution immediately next to the point (¢ after
the expansion. The velocity component along the tangent to the curve x= T(z)
1s equal to its value 1n the undisturbed flow. The values gilven above for
M, and ¥, are the Mach numbers in the corresponding reglons, whilst the
remaining parameters are defined in Fig.2.

From the given data 1t follows that the devilations of the streamlines from
the stralght lines g = const are not large. These same data enable us also
to estimate the relative dimensions of the regions 4, » and ¢ for differ-
ent values of XA~

We notice moreover a simple solution of Equations (2.7) for the case of
flow past a plane triangular plate at an angle of attack, when 7 = x and
the pressure 1s calculated according to Newton's formula p = wZ . Moreover,
if we neglect the thickness of the entropic layer near the leading edge in
comparison with 1ts thickness at the middle portion of the airfoil, thea in
Equations (2.7) we can take ¢ = 2® ({),u = u (Cg, w=w({),p=rp (), where
¢ = z/& . Then Equations (2.7) reduce to a system of ordinary differential
equatlons with respect to ( .

3. It 1s essential to note that in the case when the thickness of the
entroplc layer 1s comparable with or exceeds the thickness of the body, the
1ift Yy for slender elongated bodies is diminished in comparison with its
value ¥, for polnted bodies.

From [ 3], where streamline flow past slender blunt elongated bodies 1is
considered under the assumption [2] concerning the stro compression of the
gas behind the shock wave, 1t follows generally that Y/¥ = O From [4],
where a refinement of the results of [3] is gilven with the help of introduc-
tion of the ehtropic layer [6], it follows that Y /Y, ~<t */e. For the
case under consideration of flow past planar bodies of airfoll type the
bluntness increases the 1ift. Papers [7 and 8], where flow past a plane blunt
plate at a small angle of attack is worked out by the method of perturbations,
confirm the stated conclusilon.

This difference arises from the fact that for deflection at a small angle
in the case of an alrfoil the entropic layer 1s displaced by the body, whilst
in the case of & slender elongated body the boundary of the enropic layer 1is
scarcely altered.

4, Let us consider the flow of a viscous hypersonic stream past slender
airfoils with sharp leading edges. We introduce the following supplementary
notation: pju, is the coefficient of viscosity (u° is the coefficlent of vis-
coslty corresponding to the stagnation temperature of the unperturbed stream),

¢ 1s the Prandtl number, »UZ 1is the enthalpy.
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The equations of the three-dimensional boundary layer have the form

ax+pv L 4w Z+‘Z—Z=a~‘l( Z—:),{;,p=”:1ph
u%%-P”w-*‘ng;-*‘%:%(P%)%, R,.»=—————p°°i;’°L
Du o B0, p=p@a,  p=pk) G
pu—(h+ “ +w )-}—pvgy—(h—}—u tuﬁ>+pw (h-}—“_"_*wz)—_—
T

The flow outside the boundary layer satlsfies the system of equations
(1.1) and the boundary conditions (1.2). It is assumed that the thickness
of the body does not exceed the thickness of the boundary layer 6'—'(8/1?*Yh.
On the surface separating the boundary layer from the inviscid stream
y = tplx,z) we have to satisfy the conditions of continuity of pressure and
of the vertical component of velocity. The temperature on the outer surface
of the boundary layer 1s assumed to be equal to zero. On the body, the equa-
tions of the surface of which is y = 1f(x z), we have to satisfy the usual
conditions of adhesion and the equality of temperature of the gas and the
wall (or the condition for the heat flow into the wall).

As an example of three-dimensional viscous hypersonic flow let us consider
the flow past of plane trlangular plate with sharp leading edges, with a
glven surface temperature or heat lnsulation, at ¥ = = , We shall seek

the equations of the outer surface of the boundary layer, the surface of the

shock wave and the remaining parameters 1n the reglon of inviscid flow in
the form

= b¢ (z, 2) = 62D (§), y = 8 (2, 2) = b2V (D) (4.2)

_ 8P _ 14 (70 ) N S
V—; y P RO (Cv "l)' v x:/‘ ) R*]’l‘

== =Y
g_—:l:’ 7]-‘6::;/‘

Equations (4.1) of inviscid flow and the boundary conditions at the shock
wave (1.2) and on the surface of the boundary layer take the form

3n \ 8V v R 14 6P
}?O(I,o___ . ) o og o o KoV o 4 %o o —

A
IR, oV R
(Vo—-3—2—) o 4 Roa; t 5 =0
3n\y3 Po _"_ﬁ__’&_=
(V"'" 4 )an Ro* CBC Ro* 2R* 0 (4.3)
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(4.3)
%1
R":n—i for 1 =¥ (0 cont.
3 a®
Vozzq)—”CT{;‘ for 1= ®(])
For the boundary layer we seek the solution in the form {4.4)

=U (71, E)y w = W(Tl, E)‘r v= g8V (n, C), h=h (T\a )
p=am*R@ 1L, p=a'hd

7

e T T e R T
oOuiGary conaivions 1

e
take the form

[

$ $3

¢<)
w
[
o
=]
[*]
[
[t
Ko
i
o)
o
w
w
:JV
o
[*]
5
j«3
"
e
t,:l

=0,U0=0, W=020, hzhhzco:lst(ar oh [ dn =0) for n=0
V=V, = z"‘”" (4.5)
U:i, W:O, h=20 for n = (), ~ <<= 0t Yp

Here Jo ~—18, as before, the angle of sweep of the leading edges.

Substituting Expressions (4,%) in Equations (4.1), we obtain a system of
equatlons in two independent variables n and ( , which have to be solved
together with Equations (4.3) while fulfilling the boundary conditions (4.5).

For the sake of simplicity we use for the pressure the formula of the tan-
gent wedges, whlch introduces in the plane case an insignificant error of
the order of a few per cent [1]

%44 o /0 \2 ~x+1 __»__:Q__d_(_D_)
p= (%) PO=(T g *5)
Use of (4.6) makes it possible to avoid solving the system {4.3). We
shall assume that the Prandtl number ¢ =1 and the wall is thermally insu-
lated ( 3»/3n = 0 when n = O) . Then there exists an integral

B, (W 4wt = Y, (4.7)
Finally, we shall assume that the dependence of the coefficient or visco-
sity on the enthalpy is linear (u = 2n) . Let us make & substitution of
the variables in Equations (4.1); 4n place of the independent variables 1
and { introducing the variables g and { , where the A,A, Dorodnitsyn
varlable g 1is given by Equation
i ke o]
ds = R dn, szngn, CD(Z;):Sds/R (4.8)
o 0
It is essential that as we approach the outer surface of the boundary
layer, i.e, when 17 - §{{), the quantity s - » , whence follows the last
equation of (4.8).

For dependent variables let us introduce two stream functlons § and y
according to Equations

U=20y/l0s, W—1LU=2ay/3as (4.9)
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The equation of continulty can be written as

Ry — 8/, mU) + (W — tU) 0s | 00)q = — 5,y — 0¢ /[ 0s (4.10)
Taking into account Equations (4.6) to (%4.10) the system of equations of
the boundary layer (4.1) can be written in the form

— (P + ¥/ax) e s by, T o 1 — xS+ T = — 200 X
_%n—1

X [y 4 (U4 §) P/ Pl = Pey ™ Mpu, &= "5

— (g Y4 X) Kos + Vekee — &1 [ —x® (1 + ) — 9a* — 20l X

X [y + P’/ Pl = P&y Ysss (4.11)
O(5® — 1) =2\ 1 - (1 + 1) — 0 — 2] dS

n
P=1Y,0+1) (0 — D)

(where “he subscripts s and ( denote partial derivatives with respect to
the corresponding quantities, whilst primes denote differentlatlion with res-
pect to ¢ ).

The boundary conditions (4.5), after taking account of (4.9), assume the
for

(0,0 =%0,8 =% (0,8 =% (075 =0, %s (00, §) =1

Yo (0,5 =—F (—IE<H) (4.12)

As a result of solution of the system of equations (%.11), with the bound-
ary conditions (4.12), we determine the functions 1 (s, §), % (s, §),

P (1), ® (D)-

Let us seek the solution of Equations (4.11) in the form of the seriles
V=V AG—": M)+ G — "% O+ ..., h=s47 (G — O
1=V AG—=0" M+ G= D % W+ G— 0" ® + ...
P=A, (Go— U+ A, (L — 0" +A4; G —0)"+ . .. (4.13)

o= B'l (Co — C)a/‘ + By (8 — §)7/‘ + B3'(Co - C)“/‘ + ...

Substituting these series in Equations (4.11) and (4.12), we obtain recur-

rent systems of ordinary differential equations with boundary conditions spe-
The first system has the form

cified for A =0 and X == .
Py + 28, (1 + Lo Ly = 4oy, iy — 26,8 Ly = de 0
Ly=1— (/2 0+ &) — W) — 206%1 %y (4.14)
PO =9 (0 =% 0 =% 0 =0 P (0)=—"0, % (0)=1

After solution of this system we determine the quantitiles
o o]

_ Baty V1 4yY24; 1
A== VT SLl (A) da, BlszVﬁ_W (4.15)
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The subsequent systems;will not be reproduced here; it 1is not difficult
to see by substitution that if in Equations (4.13) we set

P, = VA_lxl, P = 0 (i=>3), v=4i=B,=0 (i>2) (4.16)
then Expressions (%.13) satisfy Equation (4.11) and the boundary conditions
(4.12).

Analysis of the expression for the pressure, taking account of (4.,13) and
(4.16), gives

p:P(C) _ A _ A1 VsinXo A Vsiny (447
Vz Va(cotyo —z/x)"  (xcosyqo—zsinXo)?  VE A7)

where € 1s the coordinate measured along the normal to the leading edge of
the airfoil, Accordingly, the pressure (and hence also the other flow para-
meters) are just the same as if the flow was past a swept plate, the solution
for the strong interaction on which is well known [9 and 10].

In view of the fact that Equations (4.11) are parabolic, having { as a

ﬁharacteristic, tge solution, which is constructed from the leadling edge,

does not know of” the presence’of the other leading edge and does not satis-
fy the condition W = O in the plane of symmetry of the airfoil. (In the
entropic layer (Section 2), on the contrary, by virtue of the equations belng
hyperbolic, the solution is constructed starting out from the condition ¥ =0
in the plane of symmetry). It can be shown that, for certain ( = {x 1s non-
viscous flow there arlses a shock wave, hehind which the solution so construc-
ted is not valid. The solution in the region |¢} < [¢{,| will not be con-
sidered in the present paper.

In Ejg.4 and 5 are showp_the results of a calculation of the functions
U@/ h Ve and W (A Ve obtained by A.A. Bogacheva by means of the
numerical Runge-Kutta solution of Equations (4.14%) on an electronic computer,
The values of Xa ,and x taken in the calculations are shown in the graphs.

r T
5 )\fi —_— 7/5 .
2 — — %53
N\ — x5
A
v 7 —— x:53 ‘
/ RSN -
X:”Q/é// \\
° SN 3
o0 NN TN (X5
R - /\x 24 \ﬁw TSy
us // // 7 2 — £ <7
/ ’d - ~ >
A A \\sz’” \\Zii [ > )
SR ! Z-1_ —
/_:24/‘ 30° , z)zLi” gl y
0 1.0 0 ~0.08 T3 “0.24
Fig. 4 Fig. 5

From the calculations carrled out 1t follows ghat theomaximal value of
[w| wren x = 1.4 and with Xa> varying from 30° to 75°, lles in the range
from 0.08 to 0.216, whilst if x = 1.667 1t lies in the range 0.077 to 0.258.
This confirms the estimates of Sectlon 1 according to which W~ ¢ . (It can
be rigorously proved that when ¢ - O the quantity w -~ 0). As XA increa-
ses the quantlty W increases, so that for highly swept alrfolls the influ-
ence of the secondary flow can be important. It 1s vital to notlice that in
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contradistinction to the case of the nonviscous entropy layer, in which the
secondary flow is directed away from the plane of symmetry { » > O when

2> 0 ), in the case of viscous flow past airfolls the secondary {low is
directed towards the plane of symmetry ( w < O when z > 0 }. From the
prejection of the mementum egquation con the z-axis {the third egquation of
(#.1)) we find that, close to the plane of symmetry of the airfoil (when

z > 0), the pressure must increase with decreasing 2z , in order to slow
down the secondary flow and ensure fulfilment of the conditlon 3 = 0 when
z = 0, Hence it can be concluded that the region ¢} < |¢x] close to the
plane of symmetry of the airfoll, the sclution for which is not ceonsidered,
is a region of increased pressure, and not reduced pressure as in the case
of the entropic layer.

The author thanks V.V. Lunev and V.V. Sychev for very helpful discussions.
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